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A Sketch-based Authentication System with
Biometrics: Security and Usability Analysis

Abstract

Text-based passwords are not necessarily as secure as they appear because the

protocols required for a secure password are typically ignored for a more user-

friendly one. In this paper, we propose a new sketch-based password system

that uses biometric data and provides exceptional tradeoff between security and

usability. By extending a shape recognition algorithm called Simple K-Space

(SKS), a system that is capable of being both secure and robust is developed. In

theory and experimentation, new insights into the SKS philosophy are provided,

including uniqueness of the model and tolerance of the framework. This system

is compared with a state-of-the-art graphical password system using Dynamic

Time Warping (DTW) and found to achieve comparable performance without

using any biometrics. The addition of biometrics substantially increased the

level of performance, reducing the equal error rate (EER) by more than 12%.

Keywords: Security, Authentication, Password, Biometrics, Drawmetrics,

Sketches

1. Introduction

In most secured systems, text-based passwords are the golden standard for

authenticating users. In theory, traditional passwords are very secure; given



that they meet certain criteria (e.g. randomness, minimum length, and include

capital letters, numbers, and special characters). The additional restrictions5

increase the password strength by increasing size of the password space—the

total number of possible passwords, which significantly increases the expected

number of random guesses required from a brute force attack. In truth, the more

random the password, the better. However, a complex password may result in

unanticipated consequences:10

In reality, users end up breaching the security measures taken by these pass-

word systems in one of two ways: 1) constructing a password that is too complex

to remember, or 2) ignoring the protocols completely, and creating a simple pass-

word. The first scenario is typical of a person who creates a sufficiently complex

text-based password, but writes their username and password down (or alterna-15

tively saves their login information in a text file called “passwords”). Thus, the

security measures taken are essentially nullified. The second case occurs when

the security measures are ignored. This case leaves the system vulnerable to a

brute force attack because the password space is reduced. Therefore, traditional

password mechanisms are not necessarily as secure as they appear.20

In recent years, there have been many advancements in the type and num-

ber of user authentication methods, including gestures and patterns, picture-

based passwords, and biometric recognition schemes. Each approach attempts

to optimally balance security—preventing unauthorized users from accessing the

system—and usability—granting access to authorized users with ease. The two25

extremes for such systems are: 1) perfect security, which does not grant access

to anyone, and 2) perfect usability, which grants access to all users. Neither

case is desired. Ideally, the only person capable of gaining access should be the

genuine user.

In this paper, a new authentication approach, which uses a sketch (or draw-30

ing) with biometric information as the form of authentication, is presented.

The difficulty with using sketch-based passwords is the stochastic nature of the

drawing process. The matching algorithm must be robust enough to handle the

variations from the genuine user and simultaneously be secure enough to reject
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any forgeries (random or skilled).35

Traditional text-based passwords typically use the password space (based on

certain assumptions) as the measure for security. However, because password

comparisons are more difficult with sketches than with character strings, the

password space in this case is not a good measure of security. Therefore we

provide both theoretical and empirical evidence that such a password system40

balances security and usability.

First, a review (Section 2) of previous research related to graphical passwords

and biometric systems is discussed. This brief survey provides a summary of

alternative graphical passwords and biometric systems. In Section 3, the sketch-

based password system is discussed, including enrollment and login phases. In45

Section 4, we introduce and discuss fundamental theory about the sketch-based

password system, including complexity analysis, model uniqueness, and fuzzi-

ness (or tolerance). The experiments and results, in Section 5, demonstrate

robustness, usability, and security of the sketch-based authentication system.

Lastly, conclusions and future work are discussed in Section 6.50

2. Related Work

Many researchers have studied and proposed various alternatives to text-

based passwords, including using drawings, patterns, gestures [1, 2, 3], pictures

and faces [4, 5], and local points or regions [6, 7, 8]. Additionally, biometric

recognition methods, such as fingerprint, voice, and facial recognition systems55

have been recently used for authenticating user access.

2.1. Graphical Passwords

The concept of using graphical passwords has been around for more than a

decade. Graphical passwords belong to one of three groups (as proposed in [9]):

1. Drawmetric—recall-based methods60

2. Cognometric—recognition-based methods (also referred to as search met-

ric [10])
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3. Locimetric—cued-recall based methods.

Drawmetric systems require users to create a distinctive, yet memorable,

drawing for a password during enrollment. Then, at login time users are asked65

to remember their password and accurately reproduce it. This type of system

involves a complex human-computer interaction, which includes the conversion

from a recalled version of the drawing (stored in the temporal lobe of the brain)

to the fully digital representation (stored in a computer’s or device’s memory).

Therefore, a user must physically draw their “password” using a digital tablet70

or tablet computer (any device with an appropriate user interface for drawing).

The tablet computer market explosion has greatly increased the potential for

drawmetric passwords (or password managers). Until now, drawmetric systems

have not been able to reach their full potential.

Probably, the most notable drawmetric system is Draw-A-Secret (DAS) [11].75

The DAS approach uses a coarse grid, which is displayed to the user, to encode

the drawing. The drawing is encoded using the grid cells. The ordered sequence

of grid cells that the drawing enters produces a password string. Thus, the

matching procedure for DAS is virtually no different from text-based passwords

(except for the fact that the string is generated from a drawing); the string80

produced at login time is compared with the string stored during enrollment.

There are some extensions to DAS which have improved performance. For

example, Background Draw-A-Secret [2] improves performance by adding back-

ground images. Yet Another Graphical Password (YAGP) [12] improves per-

formance by using a finer grid than the original DAS approach. The result85

reported include 100% of genuine users being granted access and only 1 security

breach in study using 18 participants. By removing the visible grid for drawing

and including stroke color as an additional feature, Passdoodle [13, 14] improves

performance; [14] achieves around 98% accuracy on a set of 10 users.

One drawback to DAS and similar approaches is the difficulty of encoding90

near intersection points of grid cells. To alleviate this problem, the Pass-Go

[15] approach uses grid intersection points as anchor points instead. Thus,
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the encoding records an ordered sequence of horizontal, vertical, and diagonal

strokes.

Cognometric systems, instead of drawing, demand that users recognize and95

select the correct set of images from a randomly assorted set of images. These

types of systems leverage the fact that humans tend to recognize something

easier than they can remember something. Although cognometric system still

require the interaction between a person and a computer, in this case, the

procedure is less complicated because the user is not required to produce a100

drawing. Instead, users are required only to indicate the recognition of a face,

landscape, or any other image, using a mouse, keyboard, or touch screen.

The best example of a recognition-based system is PassFaces [5]. During

enrollment, the user is presented with a random set of faces and asked to select

a subset of them to be their “password.” At login time, the user is presented105

with the correct set of faces dispersed among a random set of other faces. The

user is then asked to identify the correct set of faces.

Instead of faces, the Déjà Vu [4] system uses a set of images with patterns

and art. Studies [16, 17] have shown that, even with choosing faces, people

are predictable in their choice of password. Déjà Vu attempts to alleviate this110

problem by making the images very randomized, so that a bias or preference

toward any particular image is less likely to occur.

Locimetric systems, instead of requiring users to remember entire images,

have users recall and identify specific points or regions within an image. The

idea is to reduce the amount of information that a user is required to remember.115

Given a larger image, a user selects an ordered sequence of points or regions

located within the image. In principle, the image should help stimulate the

process of remembering the points previously chosen, hence the term cued-recall.

The most prominent cued-recall based method is PassPoints [6, 7, 8]. Pass-

Points presents the user with a single image, typically having numerous land-120

marks: people, buildings, objects, etc., from which the user is supposed to select

5 different locations during enrollment. At login time, the user is again presented

with the same image, and the user must choose the correct set of points within
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the image in precisely the same order.

An extension to the PassPoints philosophy, called Cued Click-Points [18, 19],125

presents the user with multiple images (one at a time). In each image the user

selects only one point to use. Similarly, the ordered sequence of locations in each

image becomes the password. If any one point is incorrect, access is denied.

Many of the methods using drawmetric, cognometric, and locimetric pass-

word systems are compared and contrasted in [20]. This literature survey ana-130

lyzes the multitude of methods in terms of both usability and security, especially

the vulnerabilities to different attacks (e.g. brute force, phishing, and shoulder

surfing).

2.2. Biometric Systems

Biometric systems—systems that measure and analyze certain biological135

properties for the purposes of identity recognition [21]—are steadily becoming

a part of everyday life, including in commercial access systems, personal com-

puters, and smart phones. Biometrics are increasingly popular because they

are supposed to be universal, distinct, permanent, and collectible [22] prop-

erties that uniquely identify an individual. For these reasons, biometrics are140

considered much more secure than traditional passwords.

Biometrics include biological properties such as fingerprints, voices, faces,

and even handwriting. Fingerprints have been widely used and accepted in

forensic, commercial, government security, and consumer applications. Despite

the fact that fingerprints are essentially unique to every individual, there are still145

concerns in terms of a system’s ability to recognize fingerprints (especially with

consumer applications). For example, fingerprint recognition is very sensitive to

noise and partial occlusion. In most cases, the signal-to-noise ratio (SNR) is low,

which increases the difficulty of recognizing fingerprints accurately (implying the

possibility of a breach in security).150

Occlusion also presents a problem for fingerprint recognition because the

fingerprint (and its features) must be visible (at least mostly visible) in order to

determine with sufficient confidence that it matches another fingerprint. There
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are several reasons for occlusion of a fingerprint including varying poses and

pressure.155

Voice recognition systems, although not as widely used as fingerprint recog-

nition in security applications, are used in applications such as voice-to-text in

cars (e.g. Ford Sync) and smart phones (e.g. Apple’s Siri), and voice command

systems (e.g. Microsoft Xbox). There are many reliability concerns when it

comes to voice recognition systems for user authentication. Multiple variables,160

such as distance to microphone(s), background noise, and vocal anomalies (e.g.

colds, dialects, and accents), affect the reliability of a voice recognition system.

The most disturbing of these variables are the anomalies because they naturally

occur in human voices, but voice recognition systems still experience difficulty

in handling these effects.165

Facial recognition systems for authenticated access are also becoming more

common because of advancements with this technology. However, there are

still some concerns about the reliability of these systems. Facial recognition

most commonly experiences difficulties with occlusion. Faces can be occluded

because of clothing or accessories, lighting conditions, or even pose. As with170

fingerprints, the confidence of the face recognition is reduced when there is oc-

clusion. Under normal operating conditions, one would expect facial recognition

to perform quite well. However, there are legitimate security concerns for false

acceptances—when the system grants access to an unauthorized person.

Although it is difficult, under normal conditions, to change or alter a person’s175

fingerprint, voice, or face, it certainly plausible that an authorized user may be

coerced (with extreme force) into unlocking the system, thus, granting access

to unauthorized users. In addition, a fingerprint can be reproduced (or in the

extreme case a finger can be severed), a voice may be recorded or copied, and

a face recognition system can be fooled with a picture of a face. Each of these180

measures requires going to great lengths, but all are reasonable means to fool a

biometric system. For sketch-based passwords, we believe that a coerced user is

less likely to reproduce a sketch accurately enough to gain access to the system

because of additional nervous jitter while under duress. However, this is not
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considered in this work.185

According to Jain et. al, “foolproof personal recognition systems simply do

not exist and perhaps, never will” [22]. However, in this paper, we attempt to

introduce a new system that bridges the gap between security and usability.

3. Recognizing Sketch-based Passwords

In this section, the biometric sketch-based password system is discussed.190

The method used for recognizing sketch-based passwords with biometric infor-

mation in essence works by first constructing a descriptor or a model, and then

applying a matching procedure that looks for consistency between a sketch and

this model.

In password systems, typically the terms recognition and/or matching are195

implied to mean verification—the problem of confirming that a user is indeed

who he/she claim to be—which is also the implication in this paper.

3.1. Overview

Enrollment

Scale
Normalization

Scale
Normalization

Scale
Normalization

Model
Representation

Model
Representation

Model
Representation

Representative
Model

Login

Database
Scale

Normalization

Accumulation &
Thresholding

claimed identity

Figure 1: The diagram depicts the primary components of both the enrollment

and login phases for the proposed sketch-based password system. The inputs

(depicted with arrows) to the “Scale Normalization” blocks for both enrollment

and login represent the input sketches from the user for the respective phases.
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There are two primary phases which are used in a sketch-based password

system:200

1. Enrollment—User registers using a username and sets his/her sketch-

based password.

2. Login—User enters his/her username and draws an instance of the pass-

word.

Fig. 1 outlines the major procedures necessary for both enrollment and login205

phases. The diagram shows two important steps involved within each phase:

capturing the input sketches and normalizing the scale. The next step for en-

rollment is constructing the model for each normalized sketch, from which a

representative model for the class of acceptable sketch-based passwords is pro-

duced. This representative model is then stored in the user database.210

After normalizing the input sketch during the login phase, the model for the

claimed user identity is retrieved from the database. Then, the consistency be-

tween the model and the sketch are determined using an accumulative method.

If enough evidence exists for the sketch to be considered similar to the exemplar

sketches that constructed the model, then access is granted. Otherwise, access215

is denied.

3.2. Input and Normalization

The input of the sketch-based password system is simply a sketch. More

rigorously, a parameterized sketch (excluding biometrics for now) is considered

to be a continuous mapping α : I → R2, expressed as α(s) = (x(s), y(s)) for arc220

length s ∈ I, where I is the interval (0, 1) without loss of generality.

Given a sketch, the scale, according to Kendall’s [23] definition, is propor-

tional to the average distance from the center of gravity. In order to achieve scale

invariance, every sketch is normalized to unity scale. Therefore, the recognition

does not depend on the size of the sketch. Note that this particular definition225

of scale is only useful for non-occluded shapes or curves. In the application

of sketch-based passwords, occluded sketches are considered to be different or

incomplete passwords. Therefore, occlusion is not considered in this paper.

9



3.3. Enrollment

During enrollment, the user is expected to provide multiple instances of the230

sketch-based password. Multiple sketches are required in order to construct a

model which is more accurate and robust than a model produced by a single

sketch. The main idea is to capture more of the possible variations from a

particular user, which helps to produce a model that is consistent with sketch-

based passwords generated by that particular user. This is, in fact, similar235

to traditional text-based schemes. In most text-based password systems, users

are required to enter their desired password at least twice. Therefore, it is not

unreasonable for a sketch-based password system to demand multiple sketches

during enrollment. Due to the additional complexity of a sketch compared with

an alphanumeric string, it is reasonable that a sketch would require more than240

two examples for enrollment (e.g. 3–5).

Given a normalized sketch, the goal is to construct a model or descriptor

that captures the desired properties of a sketch, which include:

• shape (e.g. relative distance and curvature)

• drawing direction (e.g. sketch tangent direction)245

• biometrics (e.g. pressure, velocity, or acceleration)

• parametrization (e.g. time or arc length).

The model we have chosen is a biometric extension and generalization of a

shape recognition approach called Simple K-Space (SKS) [24, 25]. A general-

ization of SKS is implemented because it has been shown to be robust to the250

multitude of variations to shape contours [26]. Since a sketch for all intents and

purposes is considered to be a shape, an extension to SKS which models shape

and other properties seemed appropriate.

Before discussing the model construction, several local features of the sketch

are required. These features are intended to capture the local properties dis-255

cussed above.
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Two shape functions, ρα(s) and κα(s), are computed (or estimated) from

the normalized sketch, α(s). ρα(s) = ‖α(s)− x0‖ is defined as the Euclidean

distance between the spatial coordinates at arc length s along the sketch, α(s),

and an arbitrary, but constant spatial reference point, x0. In this approach,260

we have chosen the reference point of the sketch to be the center of gravity.

κα(s) is defined as the local curvature at the point s on the sketch. Curvature

is defined as the magnitude of the derivative to the unit tangent vector, or

κ(s) = |T ′(s)| = |α′′(s)|.

Typically, ρα(s) ∈ U and κα(s) ∈ K, where U ⊂ R is defined by [0, ρmax]265

and K ⊂ R is defined by [0, κmax]. In practice, ρmax and κmax are determined

respectively by the length of the diagonal of the active drawing area (x-y plane)

and the device resolution.

Note that both features, distance and curvature, are invariant to translation,

rotation, and reflections.270

In order to capture the drawing direction at each point along the sketch,

α(s), the tangent direction to the sketch is computed. The tangent direction

at a point s along the sketch is represented by a scalar angle θα(s) ∈ Θ, where

θα(s) = atan2(y′(s), x′(s)) and Θ is defined by the interval (−π, π].

Since sketches drawn by most users are very noisy (in terms of jitter caused275

by shaking of the hand), θα(s) is significantly impacted by the amount of jitter.

There are two ways to handle jitter in the drawing direction: 1) quantizing the

direction angle, and 2) smoothing the jitter using a convolution kernel. In our

approach, we use the latter approach because noise near a quantization level

boundary introduces significant errors. The direction feature is not smoothed280

directly, however, SKS includes a parameter that blurs all features (not just

direction) in order to be more robust.

The next property of a sketch that is modeled is the biometric component—

pressure—which is denoted by the function bα(s). The pressure, bα(s) ∈ B, is

a scalar measurement representing the amount of force applied by the pen with285

the active area on the device’s screen, where B is defined as the interval [0, 1].

Finally, the arc length, sα(t) =
∫ t

0
‖α(u)‖ du, is used as a feature. The

11



arc length is used primarily to impose a general ordering of the samples of

the sketch (i.e. how a sketch is drawn). However, it also significantly improves

performance. The arc length without loss of generality is on the interval S,290

defined by [0, 1].

After computing each of the functions: ρα(s), κα(s), θα(s), bα(s), and sα(t),

the model of a sketch, α(s), is defined as:

mα(v) =
1

z

∫ 1

0

exp

(
−1

2
(v − vα(τ))TΣ−1(v − vα(τ))

)
dτ (1)

where vα(τ) = [ρα(τ) κα(τ) θα(τ) bα(τ) sα(τ)]
T

is the local feature vector at

the point τ on the sketch (and τ is just a “dummy” arc length variable), z is

a normalization factor (see Section 3.5), and Σ is the covariance matrix used

for smoothing the model. The intent behind blurring the model is to make the295

matching of a sketch more robust during the login phase (Section 3.4). This is

discussed further in Section 4.3.

In this work, Σ is assumed to be a diagonal covariance matrix that is con-

stant over all sketches. The non-zero parameters in the matrix are determined

experimentally. However, in general, a diagonal Σ is not necessary.300

The model in Eq. (1), mα : F → R, is a scalar function defined for all

vectors v = [ρ, κ, θ, b, s]
T ∈ F , where F ⊂ U × K × Θ × B × S. The scalar

value represents a likelihood that there exists a point, at an arc length of s on

α, that is a distance of ρ from the reference, has a curvature of κ, has a drawing

direction of θ, and has a pressure of b .305

The model, in fact, may be viewed as a hyper-surface defined over F ⊂ R5,

and it very much resembles a kernel density estimator [27]. However, the main

difference is the normalization factor, z. Density estimators normalize such that∫
F

mα(v) dv = 1,

instead, an alternative method of normalization, which is better suited to this

application, is used (Section 3.5).

After constructing each model for the multiple sketches drawn by the user

during the enrollment stage, it is useful to construct a single representative
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model (opposed to matching with all exemplars). This is accomplished by av-310

eraging the set of models. At first this approach may appear to be trivial,

however, the reason behind it is not intuitive. The assumption is that sketches

input by the user during enrollment must be similar sketches. This means the

sketches must be of the same shape and drawn in a similar manner. Therefore,

on the manifold of sketches, they are considered to be “close” in term of their315

geodesic distance. Since the models are constructed from these sketches, they

too lie in “close” proximity on the manifold of models. The average is then an

excellent representative model for the class because manifolds are locally linear

and the average optimally minimizes the distance from each point in a linear

space. However, if a user enters extremely different sketches during enrollment320

then the average model is a poor representative of the set of sketches. A simple

outlier test to determine if the sketches provided by the user during enrollment

are sufficiently different is implemented.

An interesting observation is that the optimal sketch necessary to produce

the representative model is unknown to the user after enrollment, unless the325

user is perfectly consistent (practically impossible). However, as individuals use

this system by logging in with a sketch, they adapt and learn what the system

expects to be a “correct” sketch, which is significantly easier if one is the genuine

user and already know what was drawn and how it was drawn. Although this

not the primary focus of this paper, it is an interesting process that occurs330

during the human-computer interaction.

Now that the enrollment phase has been discussed, we move on to discuss

the login phase which is the primary mode of operation.

3.4. Login

During the login phase, a user inputs his/her putative identity using a user-335

name or pin, and then the user draws the sketch-based password (attempting

to replicate the underlying biometric signature used during enrollment). This

sketch is then determined to be either sufficiently or insufficiently consistent

with the representative model of the putative user.
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The method used for computing this measure of consistency is a higher di-340

mensional extension of the matching procedure used by SKS. The SKS approach

uses an accumulative framework for determining the consistency of a shape with

a shape model. Thus, the approach used here is very similar for sketches.

Given a login sketch, α`(s) = (x`(s), y`(s)) (with corresponding curvature,

direction, pressure, and arc length functions) and model mα(v), the accumula-

tor is defined as

A(x̂) ≡ accα,α`
(x̂) =

∫ 1

0

mα(vα`
(τ, x̂)) dτ (2)

where

vα`
(τ, x̂) = [‖x̂−α`(τ)‖ κα`

(τ) θα`
(τ) bα`

(τ) sα`
(τ)]

T

is the feature vector defined by α` and x̂; A(x̂) represents the likelihood that x̂ =

(x̂, ŷ) is the reference point of the sketch, α`. This likelihood may be considered345

to be the result from a path integral over the hyper-surface of the model, mα,

where the path is defined by x̂ and the local features of the login sketch. An

example of this path integration using a 2D model (higher dimensional cases

are more difficult to illustrate) is shown in Fig. 2.

s
ρ

Figure 2: The surface represents the model constructed over the ρ-s feature

space, and the line represents an integration path defined by x̂ and the features

of α`. The result from each integral path represents the likelihood that x̂ is the

reference point for the model sketch.
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Assuming that α and α` are, indeed, two similar sketches, the consistency350

measure increases as x̂ approaches the actual reference point of α`(s). The

result is a global maximum in the accumulator at the location of the “best”

reference point. On the other hand, if α and α` are sufficiently different, no

significant peak will occur. However, the accumulator may have other local

maxima; their amplitudes are usually small in comparison to that of a peak355

generated from a similar sketch. Fig. 3 shows the difference between matching

and non-matching accumulators.
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Figure 3: Example of an accumulator that indicates a sketch (shown on top of

the accumulator) that is consistent with the model (a), and an accumulator that

indicates a different sketch (also shown) is inconsistent with the same model (b).

Since the amplitude at every point in the accumulator represents the likeli-

hood measure for that point being the reference point, then the best reference

point occurs at x∗ = arg max
x

A(x). Thus, the authentication decision is made

as follows:

decision =

Access Granted, A(x∗) > Thresh

Access Denied, A(x∗) ≤ Thresh

which means that if the login sketch, α`, is sufficiently consistent (the accumu-

lator peak is greater than than the threshold, Thresh) with the model for α,

then the two sketches are considered to be similar.360
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3.5. Model Normalization

Normalizing the model, although not a necessity, makes determination of

sketch consistency with a model much easier. Consider the unnormalized model

(i.e. where z = 1) for the sketch α(s)

m̃α(v) =

∫ 1

0

exp

(
−1

2
(v − vα(τ))TΣ−1(v − vα(τ))

)
dτ. (3)

The sketch which is most consistent with m̃α is α(s). Therefore, the normal-

ization factor

z =

∫ 1

0

m̃α(vα(τ,x∗)) dτ, (4)

which represents the result of integrating on the path (defined by the best

reference point x∗) over the unnormalized model. Using this definition of z,

the model is normalized such that accα,α(x∗) = 1 (i.e. the consistency between

the model of α(s) and α(s) itself is maximal). In practice, this means if a365

sketch is consistent with the model, then the magnitude of the peak in the

accumulator should be close to one. Otherwise, it should be bounded away

from one. How far below one depends on the severity of the deformation from

the original sketch. The more deformed the sketch, the smaller the peak in the

accumulator. Therefore, normalizing the model in this manner simplifies the370

process of determining the consistency of the match.

4. Discussion and Analysis

In this section, various properties and theorems are discussed, including

duality and computational complexity of constructing a model, uniqueness of

a model, and fuzziness in the accumulator. Every claim introduced here is375

crucial for showing that the sketch-based password system is robust, secure,

and efficient.

4.1. Duality and Computational Complexity

One important property of SKS is the duality for building a model of a

sketch. The direct implementation as expressed in Eq. (1) is called the primal380

form, and it is implemented in Algorithm 1.

16



Algorithm 1 Primal

for v ∈ F do

for τ ∈ [0, 1] do

mα(v)← mα(v) + exp
(
− 1

2 (v − vα(τ))
T

Σ−1 (v − vα(τ))
)

end for

end for

There also exists a dual to the primal algorithm, in which the curve is only

iterated over once rather than multiple times (as with the primal form). The

dual is outlined in Algorithm 2

Algorithm 2 Dual

for τ ∈ [0, 1] do

for v ∈ F do

mα(v)← mα(v) + exp
(
− 1

2 (v − vα(τ))
T

Σ−1 (v − vα(τ))
)

end for

end for

Both primal and dual algorithms implement the same integrals, but the man-385

ner in which the integrals are computed distinguishes them from one another.

The primal form computes the model by integrating over the sketch for every

point, v, in the model. However, the dual only iterates over the model for every

point along the sketch. Note the subtle distinction and that both primal and

dual have exactly the same algorithmic complexity. However, the dual can be390

used to construct an approximate model more efficiently, as we explain below.

The dual form (Algorithm 2) provides a way to efficiently construct a good

approximation of the model. For each point on the sketch, every point v is

updated in the model by a factor: exp
(
− 1

2 (v − vα(τ))
T

Σ−1 (v − vα(τ))
)

.

This factor represents a Gaussian centered at some location in the model, which395

is defined by the local features on the sketch, denoted by vα(τ). Therefore, only

points in the model that are within a reasonable local neighborhood of the center

of this Gaussian need updating, which significantly reduces the computational
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complexity for computing the model. Using a finite region of support for the

Gaussian, we can show that dual algorithm scales linearly with the number of400

points along the sketch (Observation 1).

Observation 1. The complexity for constructing the model is O(p), where p is

the number of samples along the sketch.

Proof. For each of the p points along the sketch, every point inside the local

neighborhood of the corresponding features of p is updated. Thus, the compu-405

tational complexity is O(pNp) where Np denotes the size of the neighborhood

or region of support. Assuming that the neighborhood size, defined by the set of

points inside the 2Σ or 3Σ hyper-ellipsoid, is fixed for all p, then Np is constant

and the complexity scales linearly with the number of samples over the sketch.

Therefore, the complexity reduces to O(p).410

4.2. Model Uniqueness in the Limit

An interesting result of using the SKS model (Eq. (1)) is the property of

having a unique model (in the limit). This comes primarily from the intuition

behind the shape recognition model, but it is also applicable to the generaliza-

tion discussed in this paper.415

Consider the limit of the SKS model of a parameterized curve as the elements

of the positive definite matrix Σ approach 0 (i.e. Σ→ 0 where 0 is the matrix

with all zero elements)1:

lim
Σ→0

mα(v) =
1

z

∫ 1

0

δ (v − vα(τ)) dτ

where

δ(x) = lim
Σ→0

exp

(
−1

2
xTΣ−1x

)
=

1, x = 0

0, x 6= 0

Now, consider a mapping ψ : S → M (defined by the model), which maps

an element of S—the “space of sketches”—to the “space of models,” M. Note

1 lim
Σ→0

Σ ≡ lim
ζ→0

ζΣ
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the distinction between mα(v), which maps an element of F to R, and ψ, which

maps a “sketch” to some hyper-surface defined by (v,mα(v)) in M.

Here, we show that the mapping ψ is a one-to-one mapping in the limit,420

which implies the smoothing matrix Σ may be used to set the trade-off between

a unique model or tolerant model (i.e. security vs. usability).

Theorem 1. In the limit as Σ → 0, two models ψ(α1) and ψ(α2) of two

sketches, α1 and α2 respectively, are equal iff α2 = Tiso(α1), where Tiso is

some isometry (e.g. translation, rotation, or reflection).425

In order to prove Theorem 1, the following lemma is necessary.

Lemma 1. Given that the feature vector v(s) at s is invariant to any isometry,

then v1(s)=v2(s) iff α2 = Tiso(α1).

Proof. First, we need to make sure that the assumption about the feature vectors

holds. In the case for sketches, ρ which is a distance from the center of gravity430

is invariant to translation, rotation, and reflection; as is the curvature κ. The

tangent direction θ is not directly invariant to rotation or reflection. However,

the angle can be measured relative to the principle direction (which rotates

and reflects with the sketch). Therefore, θ may also be invariant to isometries.

The biometric b is also invariant to isometries because it translates, rotates,435

and reflects with the sketch, and arc length is also invariant. Therefore, with

sketches we may ensure that the features are invariant to any isometry.

Assuming that α2 = Tiso(α1), then due to the invariance to isometries

v1(s)=v2(s). And if v1(s)=v2(s), then α2 is equal to α1 (up to a rigid trans-

formation).440

Now, we can prove Theorem 1.

Proof. Assume thatα2 = Tiso(α1). From Lemma 1, this implies that v1(s)=v2(s).
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Therefore,

lim
Σ→0

mα1
(v) =

1

z

∫ 1

0

δ (v − vα1
(τ)) dτ

=
1

z

∫ 1

0

δ (v − vα2
(τ)) dτ

= lim
Σ→0

mα2
(v).

Thus, ψ(α1) = ψ(α2).

Conversely, we want to show that ψ (α1) = ψ (α2) implies α2 = Tiso(α1).

However, if the contrapositive:

α2 6= Tiso(α1)⇒ ψ (α1) 6= ψ (α2)

is true, then the original statement itself is also true.

So, assuming that α2 6= Tiso(α1), then we know that v1(s) 6= v2(s) from

Lemma 1. Therefore, ∃s∗ s.t. v∗ = v1(s∗) 6= v2(s∗). Then, it follows that:

lim
Σ→0

mα1
(v∗) =

1

z

∫ 1

0

δ (v∗ − vα1(τ)) dτ

=
1

z
δ (v∗ − vα1

(s∗)) =
1

z

and

lim
Σ→0

mα2
(v∗) =

1

z

∫ 1

0

δ (v∗ − vα2
(τ)) dτ

=
1

z
δ (v∗ − vα2

(s∗)) = 0

Thus, ψ(α1) 6= ψ(α2).

This concept of uniqueness does not theoretically hold for arbitrary Σ.445

However, the system is designed intentionally so that there is some level of

tolerance—non-uniqueness—in the model. This is due to the fact that people

are not perfect; they make errors when reproducing a sketch. So, in order to

make the system more robust and usable, the model is intentionally fuzzy and

not unique. In fact, true uniqueness is not desirable.450

Intuitively, we are claiming that, in general, uniqueness is only a local prop-

erty of the model. We provide some experimental evidence to support this claim

in Section 5.1.
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4.3. Robustness in the Accumulator

Given a model mα(v), there exists some continuous path p (Fig. 2) over the455

model, that is the p is defined in terms of the features, that maximizes the peak

in the accumulator (Eq. (2)). In principle, this path is defined by α. Therefore,

there exists a small “band” or “tube” around the path p that defines allowable

deviation from the optimal path (corresponding to deviations of the sketch) over

the model, which results in a “small” difference in the accumulator peak.460

Primarily due to jitter and other noise factors while drawing, most people

cannot perfectly reproduce their own sketch. A significant (but less than op-

timal) amount of accumulation occurs when a sketch, corresponding to a near

optimal path over the model, is drawn. Therefore, there is some amount of

tolerance (i.e. robustness) built directly into the matching procedure. This tol-465

erance, which is also controlled by Σ, is what makes this system more practical.

Thus, more blurring in the model implies less security of the system because

less accuracy is required of the user.

5. Experiments and Results

In this section, we demonstrate the feasibility and security of our system470

through experimentation. In order to demonstrate the current level of perfor-

mance, several experiments are performed using both synthetic and hand-drawn

sketches. The purpose of these experiments is two-fold: 1) to support the claims

in Section 4 and 2) to provide a performance analysis of the proposed password

system.475

In this paper, as well as many other biometric systems, performance is mea-

sured by the false acceptance rate (FAR) versus the false rejection rate (FRR)

curve. The FAR is the number of accepted forgeries divided by the total number

of forgeries, and the FRR is the number of genuine sketches that are rejected

divided by the total number of genuine sketches. In some cases, performance is480

reported with a single number referred to as the equal error rate (EER), which

is the rate where the FAR and FRR are equal.
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5.1. Model “Uniqueness”

In this set of experiments, we demonstrate that the SKS model is, for all

intents and purposes, unique. The idea is to show that a “small” change in485

the sketch results in a “small” change in the model. These experiments provide

some experimental evidence to support Theorem 1.

Given two distinct—drawn by different individuals—sketches, we compute

50 intermediate sketches using linear interpolation. This allows us to consider 50

unique sketches and their corresponding models from one sketch to another. The

measures used to to quantify the differences between the models and sketches

respetively are the mean squared errors (MSEs):

MSES(α1,α2) =
∑
i

(α1i −α2i)
2

(5)

MSEM(m1,m2) =
∑
j

(m1j −m2j)
2
. (6)

We can observe how a change from the original sketch is reflected in the

models by plotting the MSE of the models (Eq. (6)) with respect to the MSE for

the sketches (Eq. (5)). In this case, the MSE is calculated using the interpolated490

sketch (model) and the original sketch (model). The expectation is that as the

interpolated sketch differs from the original sketch (in terms of MSE), that the

MSE between the models will also increase.

Some examples of this procedure are shown using projections of the higher

dimensional models in Fig. 4. Notice how every perturbation of the sketch495

results in a corresponding change in the model, which is exactly what we imply

when we say that model is (locally) unique. Some example plots of model MSE

vs. sketch MSE are shown in Fig. 5.

5.2. Robustness

In the following experiment, we demonstrate the robustness of the accumu-500

lative framework. As in the previous section, we use the interpolation between

two distinct sketches. While holding the model constant (i.e., let the model
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Figure 4: Shows the interpolation between a heart and a figure-8 (row 1). Then,

the corresponding projections of the models onto the ρ-s plane are shown in row

2. Here, we can see that the first two shapes (and models) are more similar than

the first and the last.

be constructed from the first in the interpolated sequence), let the login sketch

vary. As the sketch differs, the accumulator peak changes too. Initially, the dif-

ference between the accumulator peaks is very little. As the sketch differs more505

and more, the accumulator peak becomes less distinctive, indicating less simi-

larity between sketches. Therefore, despite small perturbations (from the sketch

producing the model) occurring, the accumulator will still exhibit a sufficiently

larger peak, indicating a matching sketch. This implies that the matching pro-

cedure is intentionally fuzzy, which makes the system more robust.510

A sequence of test shapes and the accumulators are shown in Fig. 6.

5.3. DooDB Database

In this set of experiments, we use the DooDB database [28, 29], which con-

tains a set of finger-drawn doodles (or sketches) and pseudo-signatures. For the

purposes of comparing our system with a state-of-the-art method, we outline515

our experiments in the same manner.
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Figure 5: The plot shows how the MSE in the “space of sketches” is reflected

in the “space of models” for the interpolation from one sketch to 4 different

sketches. Initially, the MSE is null for both because the sketches and models are

identical. However, as the sketches becomes different, the models also become

increasingly different which is reflected in the examples shown here. The exact

nature of the curve depends on both starting point and ending point in the

“space of sketches.”

The DooDB database contains files which include both spatial and temporal

information, which are used for positional, velocity, and acceleration type fea-

tures. Since their data was collected using a device with a resistive touch screen

and without any hardware for detecting pressure, they do not use pressure as520

a biometric feature. Therefore, to compare the systems on a level playing field,

our system is tested on the DooDB database without the biometric pressure.

We will demonstrate the advantage of using biometric pressure in Section 5.4.

The performance of our SKS-based method is compared with the method

used in [29], which is a Dynamic Time Warping (DTW) based system. They525

test performance on both doodles (or sketches) and pseudo-signatures, and they

report an EER for both random and skilled forgeries (with the expectation that
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Figure 6: The test sketch is overlaid on the accumulator in order to show how

the accumulator changes as the shape is deformed. Notice, how even deformed

versions of the same sketch reveal a peak in the accumulator (columns 1–4).

However, if the sketch is deformed too much the peak is diminished (column 5).

skilled forgeries will have worse performance). The performance measures used

are the random forgery EER (denoted as EERrd) and skilled forgery2 EER

(denoted as EERsk) for both doodles and pseudo-signatures.530

The results from [29] and our results are both reported in Table 1 for com-

parison. In [29], three different features sets are used with the DTW method.

These features are ATVS-Pos, ATVS-Vel, and ATVS-Acc, which represent the

spatial coordinates, velocity, and acceleration features respectively.

2A skilled forgery is defined as one in which the forger knows what the sketch looks like as

well as its beginning and ending points
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Doodles Pseudo-signatures

Method Session EERrd EERsk EERrd EERsk

ATVS-Pos 1 2.7 28.0 3.5 28.6

ATVS-Vel 1 3.4 26.7 1.6 23.9

ATVS-Acc 1 4.5 28.1 2.2 19.8

SKS 1 1.4 28.0 1.6 23.3

ATVS-Pos 2 7.6 36.4 5.0 34.5

ATVS-Vel 2 6.3 33.9 3.8 29.7

ATVS-Acc 2 7.3 34.1 4.3 25.0

SKS 2 3.8 35.9 5.2 28.5

Table 1: Performance comparison between DTW and SKS on DooDB database,

which included both doodles and pseudo-signatures. The best performance is

achieved using the SKS-Bio, which is the approach presented in this paper.

The results in Table 1 show that even without biometric pressure SKS is535

comparable to (better than in some cases) the DTW method. However, there

are some important observations to note. First, SKS appears to perform slightly

better than DTW on the doodles, but not on the pseudo-signatures. Recognizing

doodles (or sketches) was the objective of our approach, and we have achieved

an improved results on the set of doodles. For the pseudo-signature, we still540

achieve comparable performance to the DTW approach, despite not designing

the system with signatures in mind. Second, but probably most significant, is

that our system is easily generalized to incorporate features such as biometric

pressure as a property of a sketch. Since the DooDB database does not have

pressure, we cannot accurately compare the two systems using pressure. How-545

ever, we believe that biometric pressure significantly improves performance over

those systems without it. Finally, the DTW warping approach tests both ve-

locities and accelerations. In our experiments, we found that the improvement

from velocity came more from the direction than the magnitude (or speed).

Now, acceleration, which is a second derivative with respect to time, is a very550
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noisy feature. In some cases, acceleration improves performance and in others

acceleration worsens it.

5.4. Biometric Pressure

The following set of experiments aims to demonstrate the potential security

benefit from adding biometric pressure to sketch-based password systems. A555

total of 100 sketches (with pressure information) from 5 different users were

obtained using a Samsung Galaxy Note 10.1. Each of the 5 users provided 10

genuine sketches (i.e. 50 genuine sketches in total), and the remainder of the

100 sketches were skilled forgeries. Similar to the experiments performed on

the DooDB database, we build a model using 3–5 example sketches (the first560

3–5 sketches provided) and measure the verification performances (in terms

of EERrd and EERsk) on the remaining sketches. The results are shown in

Table 2.

Method # Examples EERrd EERsk

SKS 3 2.5 17.8

SKS-Press 3 3.5 10.7

SKS 4 2.5 16.6

SKS-Press 4 4.1 3.7

SKS 5 1.6 14.0

SKS-Press 5 0.0 3.3

Table 2: Performance comparison between the sketch-based password system

with and without biometric pressure. Observe how the pressure makes an im-

provement in performance in almost all cases: all skilled forgery scenarios, and

the 5 example case for random forgeries.

The performance difference between SKS without pressure (SKS) and SKS

with pressure (SKS-Press) is substantial; a more than 12% reduction in EER.565

The performance improvement for the random forgery scenario is less significant

than that of the skilled forgery scenario. This is reasonable because in the
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random forgery case, the shape and directional components of the sketch are

already mostly distinct. Thus, there is not much to improve upon. However, for

skilled forgeries the shape and direction components are as similar as humanly570

possible. Therefore, we can attribute the performances differences between SKS

and SKS-Press to the biometric pressure. In every skilled forgery scenario tested:

3, 4, and 5 example sketches, the best performance is achieved by the addition

of pressure.

6. Conclusions575

In this paper, we discussed a novel sketch-based password system incorpo-

rating shape and the biometric pressure. Using an extension of the SKS shape

recognition algorithm, we analyzed both the security and usability aspects of

the approach. It was demonstrated that the model of a sketch is unique in the

limit; implying a perfect security scenario. However, it was also shown by relax-580

ing the smoothing matrix, we were able to balance both security with usability.

The fuzziness that is built into the model of a sketch by means of the smoothing

matrix directly affects the robustness and usability of authentication system.

The system, without using biometrics, was compared with a state-of-the-art

DTW approach using the same database of pseudo-signatures and doodles (or585

sketches). In general, the SKS achieves similar performances (better in some

cases). The advantage of SKS is the fact that it is more general than DTW.

DTW requires restrictions such as boundary and monotonic constraints, where

as SKS is robust to the start/end points and does not impose any monotonicity

constraints. Thus, freeing SKS to accumulate evidence of consistency between590

sketch and model by means of more general transformations, opposed to the

constrained method used by DTW.

More importantly, the addition of biometric pressure was shown to increase

the level of performance by more than 12%. In security sensitive applications,

the results demonstrate the potential for biometric pressure to provide improved595

security compared with sketch-based passwords that do not include this feature.
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The average person is capable of reproducing a simple sketch with biometric

pressure within a certain degree accuracy. However, there are still many ques-

tions to answer about using pressure for sketch-based passwords.

6.1. Future Work600

In the future, we hope to construct a larger dataset that consists of sketches

with biometric pressure in order to further demonstrate the security and us-

ability improvement by using this feature. To our knowledge, there is no such

sketch-based database that includes this information at this time. Therefore,

we plan on making one publicly available.605

Additionally, we hope combine the approach used in this paper with param-

eter estimation and feature selection. The addition of parameter estimation will

hopefully provide improved results by having a variable smoothing parameter

opposed to static one. Feature selection methods, such as KPCA, PCA, or ICA,

provide the means to utilize the most meaningful features, which will provide a610

more compact and useful descriptor for a sketch-based password.
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